

Cross-Governmental Collaboration: Characterization of emissions and exposure due to 3D printing

CSS.3.1 Emerging Materials and Technologies

November 4, 2021

Todd Luxton

Souhail Al Abed and Kim Rogers

Why 3D Printing?

Who is Involved?

What do We Need to Know?

- Physicochemical properties of the raw materials/starting product
 - Major and Minor
- Emission Properties
 - Aerosols and VOCs
 - Composition/Concentration
- Emission Dose
 - Adverse Health Effects
- Product Use
 - Chemical/Particle Release
- Disposal/Reuse/Recycle

How is the Research Structured?

- Each Agency is utilizing unique expertise and technology to address specific data and research needs
- Intra-Agency work group established in 2019
 - Future Meeting Dec 2021
- Intra-Agency Agreements (CPSC-EPA)

- Physicochemical properties of the raw materials/starting product
 - Major and Minor
- Emission Properties
 - Aerosols and VOCs
 - Composition/Concentration
- Emission Dose
 - Adverse Health Effects
- Product Use
 - Chemical/Particle Release
- Disposal/Reuse/Recycle

EPA Research Efforts

- Inorganic Composition and Concentration
 - Method Development for complete digestions
 - Quantification of inorganics present as function of polymer and manufacturer, color, additive
 - Chemical Speciation of metals present in filaments

EPA Research Efforts

- Complete VOC Emission Profile
 - Closed system combustion allows for complete transfer of all reaction products
 - New reaction products discovered
- Influence of Additives on VOC emission profile
 - Additives alter emission profile
 - CNTs increase hazardous compound emissions
 - Chlorinated VOCs identified
 - Non-advertised additives present (silanol-copolymers)

DOI: 10.1021/acs.est.9b00765

EPA Research Efforts

- Exposure Assessment
 - Meta –Analysis published data provided first comprehensive review of data
- Exposure Modeling
 - Translation of emission data from 3D printing to internal dose
 - Modeling efforts demonstrate impacts of age on exposure and lung burden

Future EPA Research Efforts

- Determination of inorganic partitioning into the aerosol phase
- Identification of the inorganic and organic composition of 3D printer aerosols
- Evaluation of the impacts of trace metal on VOC emissions
- Evaluation of *in-vitro* cellular response of aerosols
- Determination of chemical release from 3D printed objects and impacts of chemical and physical aging

EPA Strengths and Critical Role

- Chemistry
 - State Of the Art Equipment
 - Expertise in Both Inorganic and Organic Chemistry
- Nanoscience
 - State of the Art Equipment
 - Expertise in Materials Characterization
 - Expertise in Detection and Quantification of Nanomaterials
- Exposure Science
 - Expertise in quantifying exposure at environmentally conditions

EPA Products

Seven peer reviewed publications in the past two years with 108 citations

- Byrley, P., W. K. Boyes, K. Rogers and A. M. Jarabek (2021). "3D printer particle emissions: Translation to internal dose in adults and children." Journal of Aerosol Science: 105765.
- Byrley, P., M. A. Geer Wallace, W. K. Boyes and K. Rogers (2020). "Particle and volatile organic compound emissions from a 3D printer filament extruder." Science of The Total Environment 736: 139604.
- Byrley, P., B. J. George, W. K. Boyes and K. Rogers (2019). "Particle emissions from fused deposition modeling 3D printers: Evaluation and meta-analysis." Science of the Total Environment 655: 395-407.
- Potter, P. M., S. R. Al-Abed, F. Hasan and S. M. Lomnicki (2021). "Influence of polymer additives on gas-phase emissions from 3D printer filaments." Chemosphere 279: 130543.
- Potter, P. M., S. R. Al-Abed, D. Lay and S. M. Lomnicki (2019). "VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing." Environmental Science & Technology 53(8): 4364-4370.
- Stefaniak, A. B., L. N. Bowers, A. K. Knepp, T. P. Luxton, D. M. Peloquin, E. J. Baumann, J. E. Ham, J. R. Wells, A. R. Johnson, R. F. LeBouf, F. C. Su, S. B. Martin and M. A. Virji (2019). "Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers." Journal of Occupational and Environmental Hygiene 16(8): 519-531.
- Yi, J. H., M. G. Duling, L. N. Bowers, A. K. Knepp, R. F. LeBouf, T. R. Nurkiewicz, A. Ranpara, T. P. Luxton, S. B. Martin, D. A. Burns, D. M. Peloquin, E. J. Baumann, M. A. Virji and A. B. Stefaniak (2019). "Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys." Inhalation Toxicology: 14.

Questions